PHÒNG KHOA HỌC CÔNG NGHỆ - ĐẠI HỌC DUY TÂN

Quốc tế

Sankhadeep Chatterjee; Sarbartha Sarkar; Sirshendu Hore; Nilanjan Dey; Amira S. Ashour; Fuqian Shi; Lê Đắc Nhường (2017). Structural Failure Classification for Reinforced Concrete Buildings using Trained Neural Network based Multi-Objective Genetic Algorithm. Structural Engineering and Mechanics, 63(4), pp. 429-438. (ISI, IF = 1.118)

Ngày: 19/09/2019

Abstract

Structural design has an imperative role in deciding the failure possibility of a Reinforced Concrete (RC) structure. Recent research works achieved the goal of predicting the structural failure of the RC structure with the assistance of machine learning techniques. Previously, the Artificial Neural Network (ANN) has been trained supported by Particle Swarm Optimization (PSO) to classify RC structures with reasonable accuracy. Though, keeping in mind the sensitivity in predicting the structural failure, more accurate models are still absent in the context of Machine Learning. Since the efficiency of multi-objective optimization over single objective optimization techniques is well established. Thus, the motivation of the current work is to employ a Multi-objective Genetic Algorithm (MOGA) to train the Neural Network (NN) based model. In the present work, the NN has been trained with MOGA to minimize the Root Mean Squared Error (RMSE) and Maximum Error (ME) toward optimizing the weight vector of the NN. The model has been tested by using a dataset consisting of 150 RC structure buildings. The proposed NN-MOGA based model has been compared with Multi-layer perceptron-feed-forward network (MLP-FFN) and NN-PSO based models in terms of several performance metrics. Experimental results suggested that the NN-MOGA has outperformed other existing well known classifiers with a reasonable improvement over them. Meanwhile, the proposed NN-MOGA achieved the superior accuracy of 93.33% and F-measure of 94.44%, which is superior to the other classifiers in the present study.

Keywords

genetic algorithm;classification;neural network;reinforced concrete

 

https://doi.org/10.12989/sem.2017.63.4.429

  • CỤC SỞ HỮU TRÍ TUỆ VIỆT NAM
  • Quỹ hỗ trợ sáng tạo kỹ thuật Việt Nam
  • Liên hiệp các hội KHKT Đà Nẵng
  • SỞ KHOA HỌC VÀ CÔNG NGHỆ TP ĐÀ NẴNG
  • Sở Khoa học và Công nghệ Quảng Nam
  • TAP CHI KHCN VN
  • THANH TRA BỘ KHCN
  • NGÀY KHOA HỌC VÀ CÔNG NGHỆ
  • BỘ KHOA HỌC VÀ CÔNG NGHỆ
  • Đăng ký thi sơ tuyển