PHÒNG KHOA HỌC CÔNG NGHỆ - ĐẠI HỌC DUY TÂN

Quốc tế

Mahdi Shariati, Nguyen Thoi Trung, Karzan Wakil, Peyman Mehrabi, Maryam Safa, Majid Khorami (2019). Moment-rotation estimation of steel rack connection using extreme learning machine. Steel and Composite Structures, 35 (5), 427-435. (ISI, IF = 3.899)

Ngày: 19/04/2021

Abstract

The performance of precast concrete structures is greatly influenced by the behaviour of beam-to-column connections. A single connection may be required to transfer several loads simultaneously so each one of those loads must be considered in the design. A good connection combines practicality and economy, which requires an understanding of several factors; including strength, serviceability, erection and economics. This research work focuses on the performance aspect of a specific type of beam-to-column connection using partly hidden corbel in precast concrete structures. In this study, the results of experimental assessment of the proposed beam-to-column connection in precast concrete frames was used. The purpose of this research is to develop and apply the Extreme Learning Machine (ELM) for moment-rotation prediction of precast beam-to-column connections. The ELM results are compared with genetic programming (GP) and artificial neural network (ANN). The reliability of the computational models was accessed based on simulation results and using several statistical indicators.

Keywords: moment-rotation; forecasting; extreme learning machine; precast beam-to-column connection; partly hidden corbel

http://dx.doi.org/10.12989/sem.2019.70.5.639

  • CỤC SỞ HỮU TRÍ TUỆ VIỆT NAM
  • Quỹ hỗ trợ sáng tạo kỹ thuật Việt Nam
  • Liên hiệp các hội KHKT Đà Nẵng
  • SỞ KHOA HỌC VÀ CÔNG NGHỆ TP ĐÀ NẴNG
  • Sở Khoa học và Công nghệ Quảng Nam
  • TAP CHI KHCN VN
  • THANH TRA BỘ KHCN
  • NGÀY KHOA HỌC VÀ CÔNG NGHỆ
  • BỘ KHOA HỌC VÀ CÔNG NGHỆ
  • Đăng ký thi sơ tuyển