PHÒNG KHOA HỌC CÔNG NGHỆ - ĐẠI HỌC DUY TÂN

Quốc tế

Dieu Tien Bui, Hoàng Nhật Đức (2017). A Bayesian framework based on a Gaussian mixture model and radial-basis-function Fisher discriminant analysis (BayGmmKda V1.1) for spatial prediction of floods. Geoscientific Model Development, 10, 3391-3409. (ISI, IF = 3.458)

Ngày: 19/11/2019

Abstract. In this study, a probabilistic model, named as BayGmmKda, is proposed for flood susceptibility assessment in a study area in central Vietnam. The new model is a Bayesian framework constructed by a combination of a Gaussian mixture model (GMM), radial-basis-function Fisher discriminant analysis (RBFDA), and a geographic information system (GIS) database. In the Bayesian framework, GMM is used for modeling the data distribution of flood-influencing factors in the GIS database, whereas RBFDA is utilized to construct a latent variable that aims at enhancing the model performance. As a result, the posterior probabilistic output of the BayGmmKda model is used as flood susceptibility index. Experiment results showed that the proposed hybrid framework is superior to other benchmark models, including the adaptive neuro-fuzzy inference system and the support vector machine. To facilitate the model implementation, a software program of BayGmmKda has been developed in MATLAB. The BayGmmKda program can accurately establish a flood susceptibility map for the study region. Accordingly, local authorities can overlay this susceptibility map onto various land-use maps for the purpose of land-use planning or management.

 

Link: https://doi.org/10.5194/gmd-10-3391-2017

  • CỤC SỞ HỮU TRÍ TUỆ VIỆT NAM
  • Quỹ hỗ trợ sáng tạo kỹ thuật Việt Nam
  • Liên hiệp các hội KHKT Đà Nẵng
  • SỞ KHOA HỌC VÀ CÔNG NGHỆ TP ĐÀ NẴNG
  • Sở Khoa học và Công nghệ Quảng Nam
  • TAP CHI KHCN VN
  • THANH TRA BỘ KHCN
  • NGÀY KHOA HỌC VÀ CÔNG NGHỆ
  • BỘ KHOA HỌC VÀ CÔNG NGHỆ
  • Đăng ký thi sơ tuyển